Partie 1 : Compression JPEG d'une image 2×2

On part de l'image suivante avec
$$X = \begin{pmatrix} R \\ V \\ B \end{pmatrix}$$
:

$$X_{1} = \begin{pmatrix} 154 \\ 0 \\ 255 \end{pmatrix} \qquad X_{2} = \begin{pmatrix} 105 \\ 255 \\ 0 \end{pmatrix}$$
$$X_{3} = \begin{pmatrix} 250 \\ 30 \\ 20 \end{pmatrix} \qquad X_{4} = \begin{pmatrix} 240 \\ 240 \\ 0 \end{pmatrix}$$

$$\tilde{R} = \begin{pmatrix} 154 & 105 \\ 250 & 240 \end{pmatrix}$$

$$\tilde{V} = \begin{pmatrix} 0 & 255 \\ 30 & 240 \end{pmatrix}$$

$$\tilde{B} = \begin{pmatrix} 255 & 0 \\ 20 & 0 \end{pmatrix}$$

Étape 1 : Transformation des couleurs

Pour chaque vecteur *X* on calcule le vecteur :

$$Y = \begin{pmatrix} L \\ M \\ N \end{pmatrix} = \begin{pmatrix} 0,299 & 0,587 & 0,114 \\ -0,16874 & -0,33126 & 0,5 \\ 0,5 & -0,41869 & -0,08131 \end{pmatrix} \begin{pmatrix} R \\ V \\ B \end{pmatrix} + \begin{pmatrix} 0 \\ 128 \\ 128 \end{pmatrix} = TX + S$$

On obtient:
$$Y_1 = \begin{pmatrix} \\ \\ \end{pmatrix}, Y_2 = \begin{pmatrix} \\ \\ \\ \end{pmatrix}, Y_3 = \begin{pmatrix} 94 \\ 85 \\ 238 \end{pmatrix}$$
 et $Y_4 = \begin{pmatrix} 212 \\ 8 \\ 147 \end{pmatrix}$.

On en déduit les matrices :
$$\tilde{L} = \begin{pmatrix} 94 & 212 \end{pmatrix}$$
, $\tilde{M} = \begin{pmatrix} 85 & 8 \end{pmatrix}$ et $\tilde{N} = \begin{pmatrix} 238 & 147 \end{pmatrix}$.

Étape 2 : Sous-échantillonnage des matrices \widetilde{M} et \widetilde{N}

Puisqu'il y a peu de nombres et qu'ils sont très hétérogènes, nous garderont les matrices \widetilde{M} et \widetilde{N} intactes.

Étape 3 : Transformation en Cosinus Discrète (TCD) de la matrice \tilde{L}

On calcule
$$TCD(\tilde{L}) = A^{-1} \times \tilde{L} \times A$$
 où $a_{ij} = \alpha(j) \cos\left(\frac{\pi(j-1)}{2N} \times (2i-1)\right)$
pour $1 \le i \le N$ et $1 \le j \le N$ avec $\alpha(j) = \begin{cases} \sqrt{1/N} & \text{si } j = 1 \\ \sqrt{2/N} & \text{sinon} \end{cases}$

Ici, N = 2 donc A =

Alors
$$A^t = \dots$$
 et $A \times A^t =$

$$TCD(\tilde{L}) = \frac{1}{2} \times \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} =$$

Étape 4 : Quantification

On divise chaque coefficient tcd_{ij} par 1 + k(i + j - 1) et on arrondit à l'entier le plus proche.

avec un facteur $k = 4$:	avec un facteur $k = 25$:
$Q(\tilde{L}) =$	$Q(\tilde{L}) =$
Au départ : 12 valeurs de <i>R</i> , <i>V</i> et <i>B</i> Au final : valeurs de <i>L</i> , <i>M</i> et <i>N</i> non nulles	Au départ : 12 valeurs de R , V et B Au final : valeurs de L , M et N non nulles

Partie 2 : Décompression de la matrice $Q(\tilde{L})$

Étape 4 : Quantification inverse

avec un facteur $k = 4$:	avec un facteur $k = 25$:
$TCD(\widetilde{L}') = \begin{pmatrix} 56 \times 5 & -12 \times 9 \\ -3 \times 9 & 0 \times 13 \end{pmatrix} = \begin{pmatrix} 280 & -108 \\ -27 & 0 \end{pmatrix}$	$TCD(\widetilde{L}') =$

Étape 3: TCD inverse

Si $TCD(\tilde{L}) = A^{-1} \times \tilde{L} \times A$ alors : $\tilde{L} =$

$$\widetilde{L}' = \frac{1}{2} \times \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} 280 & -108 \\ -27 & 0 \end{pmatrix} \times \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$\dim : \widetilde{L}' = \begin{pmatrix} 72 & 180 \\ 99 & 207 \end{pmatrix}$$

$$\dim : \widetilde{L}' = \begin{pmatrix} 72 & 180 \\ 99 & 207 \end{pmatrix}$$

Étape 2 : Sur-échantillonage

Inutile, on retrouve les matrices \widetilde{M} et \widetilde{N} . Alors :

$$Y_{1}' = \begin{pmatrix} 72 \\ 229 \\ 184 \end{pmatrix}, Y_{2}' = \begin{pmatrix} 180 \\ 25 \\ 73 \end{pmatrix}, Y_{3}' = \begin{pmatrix} 99 \\ 85 \\ 238 \end{pmatrix}, Y_{4}' = \begin{pmatrix} 207 \\ 8 \\ 147 \end{pmatrix} \qquad Y_{1}' = \begin{pmatrix} 229 \\ 184 \end{pmatrix}, Y_{2}' = \begin{pmatrix} 25 \\ 73 \end{pmatrix}, Y_{3}' = \begin{pmatrix} 85 \\ 238 \end{pmatrix}, Y_{4}' = \begin{pmatrix} 8 \\ 147 \end{pmatrix}.$$

Étape 1 : Transformation de couleurs

Si Y = TX + S alors : X =

Complément : Interprétation de $\mathit{TCD}(\tilde{L})$ dans le cas 2×2

Si
$$\tilde{L} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 alors : $TCD(\tilde{L}) = \frac{1}{2} \times \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \times \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} =$