PREMIER PROBLEME:

Un bassin contient un volume V égal à 100 L d'eau, dans lesquels sont dissous 10 kg de sel. On réalise l'expérience de dilution décrite ci-dessus avec un débit d'arrivée d'eau pure et un débit d'évacuation du mélange identiques d = 10 L/min.

Le mélange est considéré à tout instant homogène.

Au bout d'une heure, quelle quantité de sel reste-t-il dans le bassin?

▲ Approche par les suites (modèle discret) :

On décompose une heure en *n* étapes de durée $T = \frac{60}{n}$ minutes.

On peut prolonger évidemment l'expérience au-delà d'une heure.

♦ Premier modèle discret :

Au cours de chaque étape :

- on ferme l'arrivée d'eau pure,
- on laisse s'écouler le mélange par l'évacuation avec un débit constant *d* (la concentration en sel reste alors constante pendant l'évacuation),
- on rajoute instantanément l'eau pure.

On note S_k la quantité de sel (en kg) présente dans le bassin à la fin de la k-ième étape, avec $S_0 = 10$.

On note C_k la concentration de sel (en kg/L) mesurée à la fin de la k-ième étape, avec $C_k = \frac{S_k}{V}$ (où V = 100 L).

On ferme l'arrivée d'eau pure et on ouvre le robinet d'évacuation.

La concentration C_k reste constante dans le bassin et dans le liquide évacué.

Le volume de solution qui s'écoule pendant T minutes est : $d \times T$ en litres (avec les données du problème, il faut prendre n > 6, sinon on vide le bassin).

La quantité de sel évacué est donc de : $C_k \times (d \times T) = \frac{S_k}{V} \times d \times T$.

A la fin de la (k+1)-ième étape, il reste donc : $S_{k+1} = S_k - S_k \times \frac{d}{V} \times T = S_k \left(1 - \frac{d}{V}T\right)$ kg de sel.

On reconnaît la définition d'une suite géométrique de raison $1 - \frac{d}{V}T$.

Alors : $S_k = S_0 \times \left(1 - \frac{d}{V}T\right)^k$ pour tout entier k supérieur où égal à 0.

Avec les données du problème :

$$S_k = 10 \times \left(1 - \frac{10}{100} \text{T}\right)^k = 10 \times \left(1 - \frac{\text{T}}{10}\right)^k \text{ pour } k \ge 0, \text{ où } \text{T} = \frac{60}{n} \text{ et } n > 6.$$

Au bout d'une heure : k = n et $S_n = 10 \times \left(1 - \frac{T}{10}\right)^n$.

Quelques exemples:

Si T = 1 min alors n = 60 et $S_{60} \approx 0.01797$ kg, soit environ 18 g.

Si T = $\frac{1}{6}$ min (10 secondes) alors n = 360 et $S_{600} \approx 0.02357$ kg, soit environ 23,6 g.

Si T = $\frac{1}{60}$ min (1 seconde) alors n = 3600 et $S_{3600} \approx 0,02466$ kg, soit environ 24,7 g.

A ce stade, on peut faire remarquer à des élèves de première que le résultat semble tendre vers une valeur proche de 25 g.

Au niveau terminale S: $S_n = 10 \times \left(1 - \frac{6}{n}\right)^n = 10 \times e^{n \ln\left(1 - \frac{6}{n}\right)}$.

on pose : $X = 1 - \frac{6}{n}$, alors $n = \frac{6}{1 - X}$ et : $\lim_{n \to +\infty} S_n = \lim_{X \to 1} 10 \times e^{\frac{6 \ln X}{1 - X}} = 10 \times e^{-6} \approx 0,02479 \text{ kg}$

en utilisant : $\lim_{X \to 1} \frac{\ln X - \ln 1}{X - 1} = 1$ (nombre dérivé de la fonction ln en 1).

On obtient alors une valeur limite au bout d'une heure d'environ 24,8g proche de S_{3600} .

♦ Deuxième modèle discret :

Au cours de chaque étape :

- on ferme le robinet de vidange,
 - on laisse s'écouler de l'eau pure avec un débit constant *d* (la quantité en sel reste alors constante pendant cette étape),
 - on vidange instantanément le bassin pour ne garder qu'un volume V.

On reprend les mêmes notations : $T = \frac{60}{n}$, S_k est la quantité de sel (en kg) présente dans le bassin à la fin de la k-ième étape (après la vidange) et C_k est la concentration en sel du bassin à la fin de la k-ième étape (avant la vidange et après la vidange).

A la fin de la (k + 1)-ième étape, avant la vidange, le volume de liquide dans le bassin vaut : $V + d \times T$.

La concentration en sel dans le bassin est donc : $C_{k+1} = \frac{S_k}{V + d \times T}$.

Ensuite, on évacue le surplus de $d \times T$ litres. La concentration reste égale à C_{k+1} .

Il reste alors, dans le bassin, une quantité de sel égale à :

$$S_{k+1} = C_{k+1} \times V = \frac{S_k}{V + d \times T} V = \frac{S_k}{1 + \frac{d}{V} T}$$
 (en kg).

On reconnaît à nouveau la définition d'une suite géométrique de raison $\frac{1}{1+\frac{d}{V}T}$.

Alors : $S_k = \frac{S_0}{\left(1 + \frac{d}{V}T\right)^k}$ pour $k \ge 0$ (Il peut exister une contrainte sur n liée au volume totale du bassin

qui ne doit pas déborder...)

Avec les données du problème :
$$S_k = \frac{10}{\left(1 + \frac{\mathrm{T}}{10}\right)^k}$$
 pour $k \ge 0$ où $\mathrm{T} = \frac{60}{n}$.

Au bout d'une heure :
$$k = n$$
 et $S_n = \frac{10}{\left(1 + \frac{T}{10}\right)^n}$.

Quelques exemples:

Si T = 1 min alors n = 60 et $S_{60} \approx 0.03284$ kg, soit environ 32,8 g.

Si T =
$$\frac{1}{6}$$
 min (10 secondes) alors $n = 360$ et $S_{360} \approx 0.02604$ kg, soit environ 26 g.

Si T =
$$\frac{1}{60}$$
 min (1 seconde) alors $n = 3600$ et $S_{3600} \approx 0.02491$ kg, soit environ 24,9 g.

Au niveau terminale S:
$$S_n = \frac{10}{\left(1 + \frac{6}{n}\right)^n} = 10e^{-n\ln\left(1 + \frac{6}{n}\right)}$$
.

On pose
$$X = 1 + \frac{6}{n}$$
, alors $n = \frac{6}{X - 1}$ et : $\lim_{n \to +\infty} S_n = \lim_{X \to 1} 10 \times e^{-\frac{6 \ln X}{X - 1}} = 10e^{-6}$.

On retrouve le même résultat que précédemment

♠ Approche par les fonctions (modèle continu) :

On note S(t) la quantité de sel (en kg) dans le bassin à l'instant t (en minutes) et C(t) la concentration mesurée (en kg/L) dans le bassin à l'instant t avec $C(t) = \frac{S(t)}{\tau}$.

On observe ce qui se produit entre les instants t et $t + \Delta t$ où Δt représente une durée très courte.

A la date $t + \Delta t$, il y a $S(t + \Delta t)$ kg de sel dans le bassin.

On considère le volume constant car le débit d'écoulement est le même que le débit d'arrivée d'eau pure, alors: $C(t + \Delta t) = \frac{S(t + \Delta t)}{V}$.

La quantité de sel diminuant, on a également : $S(t) - S(t + \Delta t) > 0$.

Entre les dates t et $t + \Delta t$, la quantité d'eau arrivée et la quantité de liquide écoulé est la même et vaut : $d \times \Delta t$ litres.

On s'intéresse à la concentration en sel du volume de liquide écoulé : elle est forcément comprise entre C(t) et $C(t + \Delta t)$, avec $C(t) > C(t + \Delta t)$, et vaut : $\frac{S(t) - S(t + \Delta t)}{d \times \Delta t}$

Alors:
$$\frac{S(t + \Delta t)}{V} \le \frac{S(t) - S(t + \Delta t)}{d \times \Delta t} \le \frac{S(t)}{V}, \text{ d'où}: -d\frac{S(t)}{V} \le \frac{S(t + \Delta t) - S(t)}{\Delta t} \le -d\frac{S(t + \Delta t)}{V}.$$

Lorsque $\Delta t < 0$, on tient le même raisonnement et on trouve

$$\frac{S(t)}{V} \le \frac{S(t+\Delta t) - S(t)}{d \times (-\Delta t)} \le \frac{S(t+\Delta t)}{V} \quad \text{d'où}: \quad -d \frac{S(t+\Delta t)}{V} \le \frac{S(t+\Delta t) - S(t)}{\Delta t} \le -d \frac{S(t)}{V}.$$

On fait ensuite tendre Δt vers 0 dans les deux inégalités.

En supposant la fonction *S* continue en *t* : $\lim_{\Delta t \to 0} S(t + \Delta t) = S(t)$.

On applique alors le théorème dit "des gendarmes". On obtient que S est dérivable et :

$$\lim_{\Delta t \to 0} \frac{S(t+\Delta t) - S(t)}{\Delta t} = -d \, \frac{S(t)}{V} = S'(t) \, .$$

Alors, pour tout réel t positif, on trouve : $S'(t) = -\frac{d}{V}S(t)$.

Avec les données du problème, on est donc conduit à rechercher la fonction S définie sur $[0; +\infty[$ telle

que:
$$\begin{cases} S(0) = 10 \\ S'(t) = -\frac{1}{10}S(t) \end{cases}$$

Pour connaître la quantité de sel restant au bout d'une heure :

Au niveau première S et en début de terminale S, on peut appliquer la méthode d'Euler pour la recherche graphique d'une solution.

On note S_k la quantité de sel (en kg) présente dans le bassin à l'instant t_k où la suite (t_k) est une suite arithmétique de premier terme $t_0 = 0$ et de raison $T = \frac{60}{n}$, alors $S_k = S(t_k)$.

 $S_{k+1} = S(t_k + T) \approx S'(t_k) \times T + S(t_k)$ pour un réel T proche de 0 (et donc un entier *n* assez grand).

On prend donc l'approximation suivante : $S_{k+1} = -\frac{d}{V}S_k \times T + S_k = S_k \left(1 - \frac{d}{V}T\right)$.

On retrouve alors la suite géométrique donnée par le premier modèle discret.

Au niveau terminale S : $S(t) = S_0 e^{-\frac{d}{V} \times t} = 10 e^{-\frac{t}{10}}$ où t s'exprime en minutes.

Alors : $S(60) = 10 \times e^{-6}$. On retrouve à nouveau la limite des suites précédentes.

On peut remarquer qu'en fait les deux suites définies précédemment sont adjacentes et encadrent la solution continue.

DEUXIEME PROBLEME:

On considère maintenant un récipient de 180 mL d'eau contenant du chlorure de potassium (KCl) avec une concentration de 0,1 mol/L.

Le débit d'arrivée d'eau pure et le débit d'évacuation du mélange valent 20 mL/min.

Le mélange est considéré à tout instant homogène.

Au bout de combien de temps peut-on considérer que la concentration en KCl est divisée par 100 ?

Résolution:

On obtient le même type d'équation différentielle que pour la première expérience, si on note C(t) la concentration de KCl mesurée (en mol / L) dans le récipient à l'instant t (en minutes) :

$$C'(t) = -\frac{d}{V}C(t).$$

Les solutions à ce type d'équation différentielle sont de la forme : $C(t) = k \times e^{-\frac{d}{V}t}$ où k est un réel.

Comme C(0) = k, on obtient : $C(t) = C(0) \times e^{-\frac{d}{V}t}$.

On cherche donc à résoudre : $C(0) \times e^{-\frac{d}{V}t} = 0.01 C(0)$ ce qui équivaut à : $e^{-\frac{d}{V}t} = 0.01$.

On obtient : $t = -\frac{V}{d} \ln 0.01 \approx 4.6 \frac{V}{d}$.

Avec les données du problème, il faudra donc que l'expérience dure environ 41,4 minutes.

Remarque:

On peut mettre l'expression de C(t) sous la forme : $C(t) = C(0) \times e^{-\frac{t}{\tau}}$, avec $\tau = \frac{V}{d}$.

Ce nombre τ est appelé constante de temps en sciences physiques.

On considère en général que l'expérience est quasiment terminée au bout d'une durée de 5τ , ce qui correspond à un taux de dilution d'environ 99,3% (car $C(5\tau) = C(0) \times e^{-5} \approx \frac{6,7}{100}C(0)$).

Avec les données du problème, τ vaut 9 minutes et il faut donc prévoir une expérience qui puisse durer environ 45 minutes.

Pour diminuer le temps de réalisation de l'expérience, il suffit d'augmenter le débit.

Parenthèse mathématique sur la constante de temps et la valeur de 5τ :

Les équations différentielles du type $y + \tau y' = C$ où τ est un réel positif et C un réel peuvent se mettre sous la forme : $y' = -\frac{1}{\tau} y + \frac{C}{\tau}$.

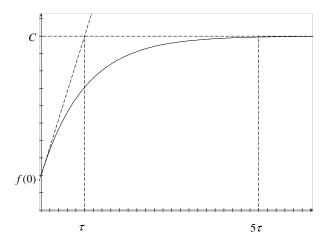
Elles admettent des solutions de la forme : $f(x) = ke^{-\frac{1}{\tau} \times x} + C$ avec f(0) = k + C.

On obtient alors des solutions du type : $f(x) = C + (f(0) - C)e^{-\frac{x}{\tau}}$ avec $\lim_{x \to +\infty} f(x) = C$.

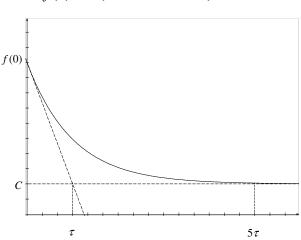
ullet Il existe une méthode graphique qui permet d'évaluer la constante de temps au.

On observe deux types de graphiques :

Si f(0) < C (cas de la pollution):



Si f(0) > C (cas de la dilution):



Dans les deux cas, la tangente au point de coordonnées (0; f(0)) a pour équation :

$$y = -(f(0) - C) \times \frac{x}{\tau} + f(0),$$

où τ est solution de l'équation : $-(f(0)-C)\times\frac{x}{\tau}+f(0)=C$, donc la constante τ peut se lire graphiquement comme étant l'abscisse du point d'intersection de la tangente avec la droite horizontale d'équation y=C.

♦ Fin de l'expérience :

Quand $X = \tau : f(\tau) = C + (f(0) - C) \times e^{-1}$, donc :

$$f(\tau) - f(0) = C - f(0) - (C - f(0)) \times e^{-1} = (C - f(0))(1 - e^{-1}).$$

Comme $1 - e^{-1} \approx 0,632$, on en déduit que, pour un temps τ (même unité de temps que t), la variation $\Delta f(x)$ a atteint 63,2% de la variation finale attendue.

Quand
$$X = 5\tau$$
: $f(5\tau) = C + (f(0) - C) \times e^{-5}$, donc: $f(5\tau) - f(0) = (C - f(0))(1 - e^{-5})$ avec $1 - e^{-5} \approx 0.993$.

La variation au bout de 5τ a déjà atteint 99,3% de la variation finale, l'expérience peut être considérée comme quasiment terminée.