Formation d'une couche de glace à la surface d'un lac (partie maths)

I- Approche par les suites après la résolution numérique à l'aide d'un tableur

On note h_n l'épaisseur de glace (en m) formée au bout de n secondes. Alors $h_0 = 0$.

D'après la formule écrite sur tableur : $h_{n+1} \approx h_n + \frac{\alpha (T_e - T_a)K}{L\rho(\alpha h_n + K)} \text{ pour tout } n.$

Sur tableur, on peut facilement vérifier que la suite (h_n) n'est ni géométrique ni arithmétique. On pense alors à utiliser une suite annexe.

On pose: $v_n = h_n + \frac{K}{\alpha} = h_n + v_0$ pour tout entier n (v_n est de même dimension que h_n).

On a: $v_{n+1} = h_{n+1} + v_0 = h_n + \frac{\alpha (T_e - T_a)K}{L\rho(\alpha h_n + K)} + v_0$ donc $v_{n+1} = v_n + \frac{(T_e - T_a)K}{L\rho v_n}$ pour tout $n \ge 0$.

On étudie donc la suite (v_n) définie par $v_0 = \frac{K}{\alpha}$ et $v_{n+1} = v_n + \frac{a}{v_n}$ pour $n \ge 0$ avec $a = \frac{(T_e - T_a)K}{L\rho} \approx 1,4.10^{-7}$.

Sur tableur la suite semble "presque" constante. Elle n'est pourtant ni arithmétique, ni géométrique.

Méthode 1 : recherche uniquement de la limite

La suite (v_n) est strictement croissante sur N $(v_{n+1} - v_n > 0$ pour tout n). Elle n'a donc que deux options : diverger vers $+\infty$ ou converger vers une limite finie x.

Si on suppose qu'elle converge, x vérifie l'équation : $x = x + \frac{a}{x}$ qui en fait n'admet pas de solution ($\frac{a}{x} \neq 0$). On en déduit que $\lim_{n \to +\infty} v_n = +\infty$.

Comme $h_n = v_n - \frac{K}{\alpha}$ pour tout entier n, on aura aussi $\lim_{n \to +\infty} h_n = +\infty$.

Méthode 2 : recherche d'une formule dépendant de n

On pose $u_n = v_n^2$ pour tout n.

On a: $u_{n+1} = v_{n+1}^2 = (v_n + \frac{a}{v_n})^2 = v_n^2 + 2a + \frac{a^2}{v_n^2}$ pour tout entire n.

 $\text{Avec}: {v_n}^2 \approx 2.10^{-3} \quad \text{et} \quad 2a = \frac{2(T_e - T_a)K}{L\rho} \approx 3.10^{-7} \quad \text{et} \quad \frac{a^2}{{v_n}^2} = \frac{(T_e - T_a)^2 K^2}{L^2 \rho^2 {v_n}^2} \approx 10^{-11}.$

Si on néglige le dernier terme, on trouve : $u_{n+1} \approx u_n + 2a$ pour tout n donc la suite (u_n) est "quasi" arithmétique avec $u_0 = {v_0}^2$ d'où : $u_n \approx {v_0}^2 + 2an$ pour tout n.

Alors: $v_n^2 = (h_n + v_0)^2 \approx v_0^2 + 2an = v_n'^2$ pour tout n

donc $h_n \approx \sqrt{{v_0}^2 + 2an} - v_0 = v_0(\sqrt{1 + ns} - 1)$ si on pose $s = \frac{2a}{{v_0}^2}$ (avec $h_n > 0$).

Vérification sur tableur : on trouve à peu près les mêmes valeurs que pour h(t).

On valide donc: $h_n \approx \frac{K}{\alpha} \left(\sqrt{1 + ns} - 1 \right)$ pour tout entier n avec $s = \frac{2\alpha^2 (T_e - T_a)}{L\rho K}$ et on trouve bien $\lim_{n \to +\infty} h_n = +\infty$.

Remarque pour les puristes :

En mathématiques, on néglige rarement des termes !!!

Une méthode plus rigoureuse consiste à minorer chaque terme u_n par $v_0^2 + nr = v'_n^2$ (terme de la suite arithmétique précédente):

$$v_{i+1}^2 = (v_i + \frac{a}{v_i})^2 = v_i^2 + 2a + \frac{a^2}{v_i^2} > v_i^2 + 2a$$
 donc $v_{i+1}^2 - v_i^2 > 2a$ pour tout entier i.

En additionnant toutes les inégalités pour i allant de 0 à n-1 (principe du télescopage), on obtient :

$$v_n^2 - v_0^2 > 2an$$
 d'où: $v_n^2 > 2an + v_0^2$ pour tout entier $n \ge 0$ (on reconnaît: $u_n > v'_n^2$ pour tout n).

On obtient : $v_n > \sqrt{2an + {v_0}^2}$ (car $v_n > 0$) avec $v_n = h_n + v_0$ pour tout entier $n \ge 0$.

Donc
$$h_n > \sqrt{2an + {v_0}^2} - v_0 = v_0 (\sqrt{sn + 1} - 1)$$
 si on pose $s = \frac{2a}{{v_0}^2} = \frac{2\alpha^2 (T_e - T_a)}{L\rho K}$.

La limite du membre de droite vaut $+\infty$ donc on a bien $\lim_{n\to +\infty} h_n = +\infty$.

Erreur commise par l'approximation de $u_n = v_n^2$ par v'_n^2 :

$$\varepsilon_n = a^2 \times \sum_{i=0}^{i=n-1} \frac{1}{v_i^2} \text{ avec } 0 < \frac{1}{v_i^2} < \frac{1}{2ai + v_0^2} < \frac{1}{2ai} \text{ pour } i \ge 1.$$

Alors
$$0 < \varepsilon_n < \frac{a^2}{{v_0}^2} + \frac{a}{2} \times \sum_{i=1}^{i=n-1} \frac{1}{i} < \frac{a^2}{{v_0}^2} + \frac{a}{2} + \frac{a}{2} \times \ln(n-1)$$
 car $\frac{1}{i} < \ln i - \ln(i-1)$ pour $i \ge 2$.

Prenons $n=10^6$: le membre de droite vaut environ 10^{-6} donc l'erreur sur v_n^2 est minime (avec $v_n^2 \approx 2.10^{-3}$). Pour n=3600: l'erreur sur v_{3600}^2 est inférieure à 7.10^{-7} .

II- Modèle continu

Préambule :

On a montré que
$$\frac{dh}{dt}(t) = \frac{\alpha(T_e - T_a)K}{L\rho(\alpha h(t) + K)}$$
 avec $\frac{dh}{dt}(t) = \frac{h(t + dt) - h(t)}{dt}$ taux d'accroissement entre t et $t + dt$.

Si on passe à la limite quand dt tend vers 0, on obtient : $h'(t) = \frac{\alpha(T_e - T_a)K}{L\rho(\alpha h(t) + K)}$.

On cherche donc une fonction h dérivable sur $[0; +\infty]$ qui vérifie cette condition, avec h(0) = 0.

Méthode 1:

On reprend la formule trouvée avec les suites où n était le nombre de secondes écoulées donc n = t.

Alors
$$h(t) = \frac{K}{\alpha} \left(\sqrt{1 + st} - 1 \right)$$
 pour $t \ge 0$ avec $s = \frac{2\alpha^2 (T_e - T_a)}{LoK}$.

Cette fonction est bien dérivable sur $[0; +\infty[$ et on peut montrer qu'elle vérifie la condition sur la dérivée et h(0) = 0.

Méthode 2 : par recherche de primitive

On cherche une fonction h dérivable sur $[0; +\infty[$ telle que $(\alpha h(t) + K) h'(t) = \frac{\alpha (T_e - T_a)K}{L\rho}$ soit $2\alpha h'(t) \times (\alpha h(t) + K) = \frac{2\alpha^2 (T_e - T_a)K}{L\rho}$.

On reconnaît la forme $2u'(t)\times u(t)$ qui est la dérivée de $u^2(t)$ alors : $(u^2(t))' = \frac{2\alpha^2(T_e - T_a)K}{L\rho}$ pour tout $t \ge 0$.

Or, les seules fonctions dont la dérivée est constante sont les fonctions affines.

On en déduit que
$$u^2(t) = (\alpha h(t) + K)^2 = \frac{2\alpha^2(T_e - T_a)K}{L\rho} \times t + C.$$

Or, pour t = 0, h(0) = 0 donc : $K^2 = C$.

On a alors:
$$(\alpha h(t) + K)^2 = \frac{2\alpha^2(T_e - T_a)K}{L\rho} \times t + K^2 = K^2 \left(\frac{2\alpha^2(T_e - T_a)}{L\rho K} \times t + 1\right) = K^2(1 + st).$$

On retrouve bien alors :
$$h(t) = \frac{K}{\alpha} \left(\sqrt{1 + st} - 1 \right)$$
 pour $t \ge 0$ avec $s = \frac{2\alpha^2 (T_e - T_a)}{L\rho K}$.

Dernière remarque pour les puristes :

Le modèle continu confirme totalement l'approximation faite dans la première partie avec les suites.

En fait, pour ce type de fonction qui vérifie une équation différentielle du type $y\,y'=a\,$ la méthode d'Euler conduit à une suite du type $v_{n+1}=v_n+\frac{a}{v_n}$, l'erreur commise alors dans l'approximation de v_n^2 par v'_n^2 correspond exactement à celle commise par la méthode d'Euler!

III- Etude des fonctions

Fonction h

h'(t) > 0 avec $T_e > T_a$ donc la fonction h est croissante sur $[0; +\infty[$.

De plus on montre facilement par composition que $\lim_{t \to +\infty} h(t) = +\infty$ car s > 0.

Fonction T_0

$$T_{0}(t) = \frac{KT_{e} + \alpha T_{a}h(t)}{\alpha h(t) + K} = \frac{KT_{e} + T_{a}K(\sqrt{1 + st} - 1)}{K(\sqrt{1 + st} - 1) + K} = \frac{KT_{e} - KT_{a} + KT_{a}\sqrt{1 + st}}{K\sqrt{1 + st}} = \frac{T_{e} - T_{a}}{\sqrt{1 + st}} + T_{a} \text{ pour tout } t \ge 0.$$

Comme s > 0, la fonction affine : $t \to 1 + st$ est croissante sur $[0; +\infty[$, par composition la fonction : $t \to \sqrt{1 + st}$ est croissante

et la fonction : $t \to \frac{1}{\sqrt{1+st}}$ est décroissante.

Comme $T_e > T_a$ alors la fonction : $t \to \frac{T_e - T_a}{\sqrt{1 + st}}$ est aussi décroissante.

On en déduit que la fonction T_0 est décroissante sur $[0; +\infty[$.

De plus, comme
$$\lim_{t \to +\infty} \sqrt{1+st} = +\infty$$
 (car $s > 0$), alors $\lim_{t \to +\infty} T_0(t) = T_a$.